>versenden | >diskutieren | >Permalink 
radon, am 18.12. 2002 um 23:49:52 Uhr
Differential

Integral ist ja schon verlinkt, deshalb soll nun auch Differential zu seinem Recht kommen.

Bei Funktionen, die von mehreren Variablen abhängig sind, unterscheidet man zwischen dem partiellen und dem totalen Differential.

Beim partiellen Differential betrachtet man nur den Einfluß einer Variable auf die Funktion und behandelt die anderen als Konstanten.
Beim totalen Differential hingegen leitet man die Funktion nach allen Variablen gleichzeitig ab.

Bsp: Wenn man z.B. eine Funktion hat in Abhängigkeit von zwei Variablen, dann kann man sie graphisch als gekrümmte Fläche im Raum darstellen.
Das partielle Differential in einem Punkt ist nun eine Tangente an die Fläche in diesem Punkt.
Es gibt zwei verschiedene - für jede Variable eine
Das totale Differential wäre eine Ebene an die Fläche (von den beiden Tangenten aufgespannt), die in beide Raumrichtungen jeweils denselben Anstieg hat, wie die Funktion.

Ich versuche gerade, mir das noch vierdimensional klar zu machen. Da müßte das totale Differential ja als Parallelepiped darstellbar sein und die Funktion als irgendwie gekrümmter Körper.


   User-Bewertung: +3

Bewerte die Texte in der Datenbank des Assoziations-Blasters!

Hiermit wurden Dir 2 Bewertungspunkte zugeteilt. Wenn Dir ein Text unterkommt, der Dir nicht gefällt, drücke den Minus-Knopf, findest Du einen Text, der Dir gefällt, drücke den Plus-Knopf. Jede Bewertung verbraucht einen Deiner Bewertungspunkte.

Damit Deine Bewertungs-Punkte erhalten bleiben, muss ein Cookie auf Deinem Computer abgelegt werden. Bitte wähle, ob der Cookie für vier Monate oder nur für eine Woche gespeichert werden soll:

Mehr Informationen über das Bewertungssystem
 Konfiguration | Web-Blaster | Statistik | Hilfe | Startseite