Anzahl Assoziationen zu diesem Stichwort (einige Beispiele folgen unten) 215, davon 208 (96,74%) mit einer Bewertung über dem eingestellten Schwellwert (-3) und 54 positiv bewertete (25,12%)
Durchschnittliche Textlänge 195 Zeichen
Durchschnittliche Bewertung 0,060 Punkte, 111 Texte unbewertet.
Siehe auch:
positiv bewertete Texte
Der erste Text am 10.1. 2000 um 14:17:21 Uhr schrieb
Tanna über Punkt
Der neuste Text am 15.3. 2024 um 13:00:22 Uhr schrieb
Hans-Ulrich Zeuner über Punkt
Einige noch nie bewertete Texte
(insgesamt: 111)

am 28.1. 2005 um 01:19:38 Uhr schrieb
KIA über Punkt

am 26.6. 2002 um 16:12:10 Uhr schrieb
hikE über Punkt

am 11.3. 2008 um 19:36:10 Uhr schrieb
pat batemann über Punkt

Einige überdurchschnittlich positiv bewertete

Assoziationen zu »Punkt«

Ceryon schrieb am 10.5. 2000 um 10:04:30 Uhr zu

Punkt

Bewertung: 4 Punkt(e)

Es ist schon schwer die Frauen zu verstehen.
Jetzt soll ich auch noch den Blaster verstehen?

Kann mir jemand erklären, wann und wie ich wieviele Punkte vom Blaster wofür bekomme?
Derzeit fühle ich mich gut ausgestattet mit Punkten und kann endlich all' die wirklich schlechten Texte rauspunkten und am Ende habe ich trotzdem noch genug Punkte, um auch die guten Texte aufzuwerten.

Ich bin schon richtig Blaster-süchtig.

Der Entropist schrieb am 8.5. 2000 um 16:38:24 Uhr zu

Punkt

Bewertung: 4 Punkt(e)

Als ich noch zur Schule ging, habe ich mich mal mit einem Kollegen aus dem Chemie-Kurs bis auf´s Messer darüber gestritten, ob ein Punkt nulldimensional ist oder nicht. Er hat´s mir einfach net geglaubt.
Er meinte, wenn er mit dem Bleistift einen Punkt malt, und der wäre nulldimensional, dann könnte man ihn ja gar nicht sehen. Meine Antwort, ein Bleistift-Punkt sei im mathematischen Sinne kein solcher, sondern eher ein gefüllter Kreis, konnte ihn nicht überzeugen. Da ist mir dann nichts mehr eingefallen und ich habe ihm seine Meinung gelassen.

manibu schrieb am 28.4. 2001 um 20:57:06 Uhr zu

Punkt

Bewertung: 1 Punkt(e)

In der AS-Theorie versucht man, ähnlich wie in der Morse-Theorie, einen Zusammenhang zwischen topologischem Typ des zurgrundliegenden Raumes und Anzahl kritischer Punkte eines geeigneten Funktionals herzustellen. Während in der Morse-Theorie von Anzahl und Indizes kritischer Punkte einer reellwertigen Funktion auf die Topologie zurückgeschlossen wird (so beweist man beispielsweise die Existenz einer Henkelkörperzerlegung für kompakte Mannigfaltigkeiten!), versucht man in der AS-Theorie von der topologischen Struktur auf die Existenz kritischer Punkte(insbesondere Minima) zu schließen. Die AS-Theorie läßt sich auch für sogenannte Finsler-Mannigfaltigkeiten durchführen, also Mannigfaltigkeiten, die eine Norm tragen. Das ist die hinreichende Allgemeinheit, um die Theorie auf Variationsprobleme in Funktionenräumen (Teilmengen von Sobolevräumen beispielsweise) anzuwenden.

Ich schrieb am 5.4. 2005 um 20:43:32 Uhr zu

Punkt

Bewertung: 1 Punkt(e)

Wenn es als erwiesen gelten kann, dass ein Punkt zu allen umliegenden Punkten die gleiche Entfernung hat, so ist damit zweifelsfrei bewiesen, dass sich von jeder beliebigen Richtung aus über diesen Punkt streiten lässt.

Lion-King schrieb am 6.2. 2000 um 00:08:58 Uhr zu

Punkt

Bewertung: 3 Punkt(e)

Der schönste Punkt ist der G-Punkt.
Der schönste Fall ist der Beifall.
Und der schönste Schlaf...



...ist der vor Mitternacht

chrissy schrieb am 24.5. 2002 um 21:15:19 Uhr zu

Punkt

Bewertung: 1 Punkt(e)

die »klassische« teilchenphysik geht davon aus dass elementarteilchen punktförmig sind, also keine räumliche ausdehnung haben. das führt jedoch zu enormen problemen was die vereinigung von relativitätstheorie und quantentheorie betrifft. diese bestehen ganz grob gesagt darin dass in der quantenwelt unglaubliche »turbulenzen« da sind, d.h. es geht richtig ab im kleinsten vom kleinsten. die relativitätstheorie aber beruht auf der annahme einer »ruhigen«, »glatten« umgebung. naja, dann machen wir es eben so: wenn wir unsere elementarteilchen so definieren dass sie eine ausdehnung haben, die um einiges über den größenverhältnissen liegt die in der quantenwelt herrschen dann »merken« sie nicht mehr dass es turbulenzen gibt. und da es nichts kleineres gibt als elementarteilchen hätten wir das problem gelöst.

Sleipnir schrieb am 24.9. 2001 um 22:23:44 Uhr zu

Punkt

Bewertung: 1 Punkt(e)

Punkte sind definierte Stellen auf einer Ebene bzw. im Raum, die keine Ausdehnung haben aber trotzdem vorhanden sind

Einige zufällige Stichwörter

Hans-Harald
Erstellt am 18.3. 2017 um 16:50:39 Uhr von jonas, enthält 45 Texte

Jahrhundert
Erstellt am 8.6. 2000 um 19:42:01 Uhr von Galaxie, enthält 66 Texte

Clausthal-Zellerfeld
Erstellt am 27.10. 2004 um 00:31:50 Uhr von urgs, enthält 5 Texte

CDU-Politiker
Erstellt am 12.9. 2011 um 18:03:10 Uhr von Agnieska, enthält 5 Texte

Wieso-ist-Fips-Asmussen-noch-nicht-verlinkt
Erstellt am 17.10. 2008 um 23:28:42 Uhr von fool, enthält 5 Texte


Der Assoziations-Blaster ist ein Projekt vom Assoziations-Blaster-Team (Alvar C.H. Freude und Dragan Espenschied) | 0,0652 Sek.